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In addition to quartz and the compounds K2Si2Os and KHSi2Os, the 
following new compounds occur as solid phases: Potassium disilicate 
monohydrate, K2Si2Os-H2O; potassium metasilicate, K2SiOs; potassium 
metasilicate hemihydrate, K2Si03.o.5H20; and potassium metasilicate mono­
hydrate, K2SiO3-H2O. 

The data obtained are presented by means of tables, and graphically 
by means of curves and solid models. Curves are given showing the solu­
bility relations in the binary systems H2O-K2SiO8 and H2O-K2Si2Os (Fig. 7), 
the isothermal polybaric saturation curves (Fig. 4), the variation of pressure 
with Si02/K20 ratio along the isotherms (Fig. 5), the isobaric polythermal 
saturation curves (Fig. 13), the P-T curves of the various monovariant 
systems (Fig. 9), and the boundary curves of the different solid phases in 
the ternary system (Fig. 8). In addition, photographs are given of the 
solid models showing the variation in the composition of the saturated 
solutions with temperature, under the corresponding 3-phase pressure 
(Fig. 11), and the variation of the composition of the saturated solutions 
with pressure, at the corresponding 3-phase temperatures (Fig. 12). 

Brief mention is made of some of the theoretical relations governing the 
equilibrium in binary and ternary systems containing a volatile component, 
and a short discussion of the proper application of the term "solubility" 
is given. 
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In a recent article1 I discussed at some length the Dieterici equation 
RT 

of state, p = e—o/"R a n c j appiied it to a number of substances, 
v — b 

among which may be mentioned isopentane, carbon dioxide and hydro­
gen. Various methods were developed of calculating the values of a 
and b (two of the "constants" of the equation) below, at, and above 
the critical temperature; and formulas were deduced connecting the pres­
sure of saturated vapor and the latent heat of vaporization with the densi­
ties of liquid and saturated vapor. 

In the present paper I desire to bring forward an additional method of 
calculating a and further to urge strongly the advantages, both theoretical 
and practical, which the Dieterici equation has over any equation of the 
van der Waals type. 

1
 THIS JOURNAL, 38, 528-555 (1916). 
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General Considerations. 
It is a simple matter to modify the equation for an ideal gas so as to 

indicate the effect produced by the intermolecular forces and by the 
volume of the molecules. One can write (p + K) (v — b) = RT, where 
K is the "cohesive" pressure and b is the volume correction, and this equa­
tion is doubtless in a general way perfectly correct, but the exact form 
of the functions which express the dependence of K and b on the tempera­
ture and volume may still be unknown. As is well known, van der Waals 
assumed that b is an absolute constant and that K is of the form a/v2, 
where a is assumed to be a constant. The resulting equation known by 
the name of van der Waals gives good results only for small pressures 
and entirely false results when applied to the critical state. For instance, 

RT the value of — c deduced from van der Waals' equation is 8/3, while the 
PcOc 

values experimentally found1 in a large number of cases are around 3.7. 
It may well be that the chief cause of the failure of the van der Waals 

equation, to be much more than qualitative in its application, is to be 
sought in the form of the function assumed for the "cohesive" or "internal" 
pressure. This view will be confirmed if we consider carefully some of 
the results obtained by Boltzmann in his studies of the kinetic theory of 
gases. 

Let us consider, first of all, a mass of gas, made up of infinitesimal 
molecules which, however, attract each other, the attraction being ap­
preciable only over extremely small distances. In the interior of the gas, 
the forces of attraction will, on the average, balance, but in a thin layer 
at the boundary there will be a resultant force directed towards the in­
terior. Boltzmann has shown that the existence of such a field of force 
will not affect the distribution of velocities or of kinetic energies, but it 
will affect the spatial distribution of the molecules, i. e., the density of the 
gas.2 A certain amount of work will be done by us if we drag a molecule 
from the interior of the gas to the wall of the containing vessel. If A 
represents the work done against the field of force in dragging N mole­
cules to the boundary, where N is the number of molecules in one gram-
molecular weight, then the pressure exerted on the wall is given by the 
following expression:2 

V 

If we introduce now a correction for the volume of the molecules, we 

obtain * = =- e~A/RT. For low densities2 at least we may set A pro-
v — b 

portional to the density or A = a/v, finally obtaining in this way the 
lYoung's "Stoichiometry," 228 (1908). 
'Jeans, "Dynamical Theory of Gases," 126 (1916). 
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RT 
Dieterici equation of state, * = T e—a/l,RT. This then is the correct 

v—b 
form of the equation of state; the "correction" on account of the "cohe­
sive" pressure is given by an exponential function. As is well known, 
for low pressures and, therefore, large volumes, the Dieterici equation 
degenerates into the van der Waals form; for when V is large compared 

with b and —^, we have p — =-( 1 ^ = J and this is approximately 

RT a 

the same as * = r — 1;, the van der Waals formula. The van der 
r v — b v2 

Waals equation cannot, therefore, be expected to hold at the critical point 
where v is of the same order of magnitude as b and as a matter of fact, 
it does not. The Dieterici equation in view of the considerations advanced 
above, might well be expected to have a much wider range of validity. 
And if, as I think I have shown to be the case, the Dieterici form is the 
correct one, the Dieterici equation should hold over any range if we de­
termine a and b as volume and temperature functions. The kinetic theory 
leads to the conclusion that 0 and b may be both volume and tempera­
ture functions and it will be worth while to determine the nature of these 
functions, using the Dieterici equation as a basis. To attempt to express 
the a and b of van der Waals' equation as functions of volume or tempera­
ture seems to me clearly a waste of time and effort, since its deduction 
from the Dieterici equation indicates that its validity is restricted to 
cases where the volume of a gas is very large compared with the volume 
of the molecules. 

Variations of a and b with the Volume and Temperature. 
Assuming a and b in Dieterici's equation to be independent of the vol­

ume, we obtain the following relations at the critical point: 
, ac ac R T C e2 

* = 2b<1 T< = ^ V P< = ^ V J PA =~2 = 3 - 6 9 5 

These results are independent of whether a and b are functions of the 
temperature or not. 

RT, 
Now the value of the ratio thus obtained is very close to the one 

PJ>C 

that actually holds for a large number of substances. We therefore in­
fer that in the case of these substances, a and b are actually independent 
of the volume even when the volume is as small as corresponds to the 
critical point. More accurately stated, the inference is that at the critical 

point, ( — J and I j - ) are very small, if not zero, or they happen to be of 

such a magnitude that they actually neutralize each other's effect. There 
is the possibility that at the critical point, a and b may have minimum or 
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maximum values in which case ( — j and f — J would be equal to zero. 

As regards the variation of a and b with the temperature, the general 
conclusion reached in my previous paper was that b increases as we 
approach the critical temperature, reaches a maximum and then decreases; 
a decreases always with rise in temperature. 

Work of Bakker on Surface Films. 
Any theoretical isotherm on a p — v diagram as given by the equation 

of state is cut by a line of constant pressure in three points below the 
critical temperature. If this pressure is that at which the liquid and vapor 
are in equilibrium, two of the points, corresponding to the volumes Vi 
and V2, represent the volumes of liquid and of saturated vapor, respec­
tively, while the third volume, Vs, is not realizable by the substance in a 
homogeneous state. In my previous article on this subject, reasons 
were given for the assumption that this volume % is equal to 2b (not 
2bc). An equivalent assumption is that the density of the substance 
corresponding to % on the theoretical isotherm is the arithmetic mean 
of the densities of liquid and saturated vapor. What seems to me to be 
a confirmation of this view is found in the conclusions reached by Bakker1 

in regard to the average density of the surface layer between liquid and 
vapor. I became acquainted with the work of Bakker after my paper 
was published. According to Bakker, the average density of the surface 
layer is the mean of the densities of liquid and vapor. This result de­
pends, it should be noted, on certain assumptions which may not be strictly 
correct. Now Bakker points out the analogy between the surface layer 
and the homogeneous substance in a state corresponding to a point on 
the theoretical isothermal close to the point we have indicated by v*. In 
other words, when liquid and vapor are in equilibrium, we have three 
specific volumes, namely, those of homogeneous liquid, homogeneous 
vapor and of transition layer corresponding to the three values on the 
theoretical isothermal, which we have denoted by Vi, % and %, If, then, 
the average density of the surface layer is equal to that of the homo­
geneous substance in the unrealizable state corresponding to %, Bakker's 

2 1 1 
conclusion is equivalent to the equation: - = — | , and this, on the 

Vs Vi Vi 

basis of the Dieterici equation, as shown in my previous paper means 
that V3 is equal to 26. 

Reference List of Equations. 
It will be convenient to set down for reference a number of mathematical 

results taken from my previous paper on this subject.4 

1 Z. phys. Chem., 73, 664 (1910). 
1 T H I S JOURNAL, 38, 529, 531, 536, 539, 540 (1916). 



ON THE DtETERtCI EQUATION O^ STATE. 1233 

RT 
The Dieterici equation, * = r e~

a/v*r (1) 
v— 0 

vc = 2bc; T, = 
Relations at critical point, _ w „ 4 c 4 « 

RT1; el 

= = 3.695 
£c% 2 

I I _ 2 _ I 

Co-existing phases, * 2 3 

^i 

— 6 = M 2 

- 6 V1/ J 

( 2 ) 

(3) 

RT 
Pressure of saturated vapor, ps = - j — e—a/,2i,RT (4) 

0 
Total heat of vaporization, 

L - R T lbg.J!L=jU 2 R T l o g f S - * - £ (5) 
Z>1 O Vi V1 Va 

O1 = - ^ 2 - RT l o g . * = * = ^ i - R T l o g / 2 (6) 

V2—
 1Wl Wi — O % Wi Wi 

a2 = 26RTlog e ^- (7) 

RT 
a3 = * l R T l 0 g < ^ = T 6 ) ( 8 ) 

* - % R T l 0 ^ ^ T f c ) <9) 

Heat of Vaporization. 

It is usually stated that measures the internal latent heat of 
Vi V2 

vaporization and this is correct if one uses the original van der Waals 
equation. For, according to this equation, the total work done in evap­
orating at constant temperature would be 

f"-** * = f(P + a\v = P(V2 - vi) + a- - « = L. 
Jv1V-O J v \ V2/ Vi V2 

Hence, is the internal heat of vaporization. But if we assume the 
Vi V2 

Dieterici equation, we obtain the following results. 
Since 

^ _ RT — a/DiRT _ _ RT ,,/jjRx a a _ 
Vi—b V2 — b Vi V2 

„ - . v2 — b n RT , _ RT log, = I dv = I1, 
Vi — b J n v — b 

and hence, measures the total latent heat of vaporization. In 
Vi V2 
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applying the van der Waals equation in the above calculations, a is as­
sumed to be independent of the volume and in applying the Dieteric 
equation, the same assumption is made in the case of b. 

As a matter of fact, the values of L, obtained from the equation1 

L = a/Vi — a I ih, 
differ somewhat from those calculated by means of the thermodynamic 
formula 

The inference to be drawn from this is that b does vary slightly with the 
volume when the latter is that of the substance in the liquid state. A 
study of these deviations might lead to a better knowledge of b as a func­
tion of the volume. 

New Method of Calculating a. 
Assuming, however, that the variation of b with changes in volume is 

negligible, we can deduce an additional method of calculating a and it 
may be of interest to compare these new values which we shall represent 
by aB with those obtained in my previous paper and represented by au 

a2, a3 and <z4 (see equations numbered 6, 7, 8 and 9 of the present article). 

Since I1 = (D2 — Di)T -^ from thermodynamics, and since we have 

we easily deduce at = iWT -^f. 
a L 

I have carried out the calculations for isopentane, using the data as 
given in my previous paper. The numerical results refer to 1 g. of iso­
pentane, pressures are given in mm. of mercury and volumes in cc. The 

values of -J^ were obtained by taking three corresponding values of ps a I 

and T, and using the interpolation formula, log p = a log T — = + c. 

From this, the value of -^ was calculated for the intermediate pressure 
oT 

and temperature. By repeating this process on different sets of corre­

sponding values of p and T, the values of -^ from o° up to the critical 

temperature were obtained. The values of 05 found from the equation 
a6 = DiD2T Jf£ are given in the seventh column of Table I and agree very 

oT 
well with those of au ck, a3 and 04. At the critical temperature, the value 
of at is much lower than that of any of the others. The explanation of 
this divergence may be due to the fact, pointed out by Mills,2 that inter-

1 T H I S JOURNAL, 38, 542. 544 (1916). 
2 / . Phys. Chem., 9, 402 (1905). 
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polation formulas give results for -^- at the critical point which are con­

siderably too low. In fact, he finds that at the critical point - S = — • 
CL x Vc 

This result is in perfect agreement with the Dieterici equation, for if we 
substitute the value — for — in our formula a = A1A2T-Ĵ  we obtain 

ve a 1 a L 
for the critical point, ac = 2VCRTC, a relation easily deducible from the 
Dieterici equation. 

TABLE I.—ISOPENTANE UNIT MASS = IG. 

<°. 

O 

2 0 

4 0 

6 0 

8 0 

IOO 

H O 

1 2 0 

1 3 0 

1 4 0 

1 5 0 

1 6 0 

1 7 0 

1 8 0 

187.8 
(Critical temperature) 

dps/dT. 

I I . 1 7 
21 .02 

35-65 
55-67 
8 1 . 9 0 

H4-5 
133-9 
155-4 
178.7 
2 0 4 . 2 
2 3 2 . 9 
263.8 
298.4 

335-7 
367.7 

01X10-«. 

4-713 
4.583 
4.461 

4-354 
4.248 

4 - 1 5 0 
4 . 0 9 3 
4 . 0 3 6 

3.977 
3.916 
3-350 
3-778 
3.687 

3-579 
3-4°4 

o«X 10-«. 

4.704 
4-582 
4.466 

4-353 
4.236 
4 . 1 2 0 

4.059 
3-991 
3-922 
3-860 

3-771 
3.690 

3-599 
3-503 
3-423 

as X10-«. 

4.708 
4-582 
4.467 

4-354 
4.242 

4-135 
4-075 
4 . 0 1 2 

3.948 
3.881 
3.806 
3.726 

3.633 
3.528 

3-423 

O.X10-*. 

2 . 2 2 3 
4-45O 

4-434 
4 . 3 1 0 
3-987 
3-747 
3-727 
3-650 
3.604 

3-564 
3-512 
3.480 

3-459 
3.436 
3.423 

0» X10-». 
4 . 2 9 2 
4 . 2 1 7 

4.175 
4 - " 5 
4 . 0 7 1 
4 . 0 0 6 
3.97O 
3.954 
3.894 
3.832 
3.801 

3-725 
3.624 

3-459 
3.087 

Summary. 
In the present paper, it is shown that the Dieterici equation of state is 

of the correct form and that it degenerates into the equation of van der 
Waals for a gas under low pressure. The equation of Dieterici might 
therefore be expected to have a much wider range of validity than one 
of the van der Waals type. 

A new method of calculating a is described and the values so obtained 
are compared with those calculated by other methods. 
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In a previous paper1 a method has been described for the determina­
tion of the available oxygen in precipitated higher oxides of manganese 

1 THIS JOURNAL, 39, 607 (1917)-


